Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough
نویسندگان
چکیده
Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimeric complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a β-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes.IMPORTANCE Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core β-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.
منابع مشابه
Functional expression of Desulfovibrio vulgaris Hildenborough cytochrome c3 in Desulfovibrio desulfuricans G200 after conjugational gene transfer from Escherichia coli.
Plasmid pJRDC800-1, containing the cyc gene encoding cytochrome c3 from Desulfovibrio vulgaris subsp. vulgaris Hildenborough, was transferred by conjugation from Escherichia coli DH5 alpha to Desulfovibrio desulfuricans G200. The G200 strain produced an acidic cytochrome c3 (pI = 5.8), which could be readily separated from the Hildenborough cytochrome c3 (pI = 10.5). The latter was indistinguis...
متن کاملConstruction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough.
A mutant of Desulfovibrio vulgaris Hildenborough lacking a gene for [NiFe] hydrogenase was generated. Growth studies, performed for the mutant in comparison with the wild-type, showed no strong differences during the exponential growth phase. However, the mutant cells died more rapidly in the stationary growth phase.
متن کاملOxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough.
Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium classified as an obligate anaerobe, swam to a preferred oxygen concentration of 0.02 to 0.04% (0.24 to 0.48 microM), a level which also supported growth. Oxygen concentrations of 0.08% and higher arrested growth. We propose that in zones of transition from an oxic to an anoxic environment, D. vulgaris protects anoxic microenviro...
متن کاملCharacterization of the [NiFe] hydrogenase from the sulfate reducer Desulfovibrio vulgaris Hildenborough.
The [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough was isolated from the cytoplasmic membranes and characterized by EPR spectroscopy. It has a total molecular mass of 98.7 kDa (subunits of 66.4 and 32.3 kDa), and contains 1 nickel and 12 Fe atoms per heterodimer. The catalytic activities for hydrogen consumption and production were determined to be 174 and 89 mumol H2.min-1.mg-1, ...
متن کاملRecovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain.
A novel sulfate-reducing bacterium (strain DePue) closely related to Desulfovibrio vulgaris ssp. vulgaris strain Hildenborough was isolated from the sediment of a heavy-metal impacted lake using established techniques. Although few physiological differences between strains DePue and Hildenborough were observed, pulse-field gel electrophoresis (PFGE) revealed a significant genome reduction in st...
متن کامل